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Abstract

A novel and e cient algorithm is presented in this paper to deal with DNS of turbulent react-
ing ows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral
accuracy. The temporal integration of the equations relies on an operating-split strategy, where
chemical reactions are solved implicitly with a sti solver and the convection-di usion operators
are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with
high-order compact schemes, and a FFT based constant-coe cient spectral solver is employed
to solve a variable-coe cient Poisson equation. The numerical implementation takes advantage
of the 2DECOMP&FFT libraries developed by Li and Laizet [1], which are based on a pencil
decomposition method of the domain and are proven to be computationally very e cient. An
enhanced pressure-correction method is proposed to speed-up the achievement of machine preci-
sion accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial
accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary con-
ditions. The software developed to implement the present algorithm is called HOLOMAC, and
its numerical e ciency opens the way to deal with DNS of reacting ows to understand complex
turbulent and chemical phenomena in ames.

Keywords: DNS, Low-Mach-number, Detailed chemistry, Turbulent reacting ow, High-order
methods, Spectral accuracy, Operator splitting

1. Introduction1

The rapid growth of computational capabilities in the last decades has allowed the appli-2

cation of high- delity numerical methods to unsteady reactive turbulent ows. For example,3

Large-Eddy Simulations (LES) are now commonly employed as a predictive tool in realistic4

complex con gurations of interest to industry (see Pitsch [2], Gicquel et al. [3], Motheau et al.5

[4], among others). However, such methods rely on several models to take into account the6

unresolved physics. The development of turbulent combustion models that can be employed7

in practical applications requires high- delity data with which model results can be compared.8

In some cases, experimental results are available and very useful, but they often lack detailed9
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information about the many species and temperature that are involved in chemical kinetics and10

about ow parameters like strain rate and turbulent statistics. Hence, Direct Numerical Simula-11

tion (DNS) is a powerful tool to generate the data required to develop models. Note also that in12

many applications such as gas turbines and reciprocating engines, ignition and extinction are im-13

portant limit phenomena that e ect system performance. The accurate prediction of these limit14

phenomena requires detailed kinetics. Moreover, quasi-spectral accuracy is needed to generate15

the high- delity data.16

In principle, whether LES or DNS approaches are employed, the most accurate representa-17

tion of the physics would be achieved through the solution of the full set of compressible, reactive18

Navier-Stokes equations with detailed chemistry models. The computational cost of solving the19

compressible equations can be however prohibitive. One reason is the complexity of the chem-20

istry. The reacting mixture generally includes a large number of chemical species with many21

hundreds of chemical reactions. The solution of the reaction equations leads to complex, sti22

systems of equations that must be solved with dedicated numerical algorithms. In practice, sim-23

ple models with reduced mechanisms are often employed to represent the chemistry with a very24

few number of species and chemical reactions (see Franzelli et al. [5] for an example). Detailed25

chemistry is generally limited to DNS of fundamental problems in canonical con gurations (see26

Mukhopadhyay and Abraham [6] for an example).27

Furthermore, from a numerical point of view, it is well known that the fully compressible ap-28

proach presents several issues when dealing with ows featuring regions where the Mach number29

M is small, which is often the case in combustion process [7]. When M 0 the equations tends30

to a singularity that break the stability and accuracy of numerical schemes employed to solve the31

set of fully compressible Navier-Stokes equations. As pointed out by Volpe [8], either with an32

explicit or an implicit approach for the time discretisation, when the Mach number is decreased33

to very small values the numerical errors increase as well as the convergence rate deteriorates.34

Furthermore, the critical time-step scales with the Mach number through a CFL condition so as to35

ensure the numerical stability due to the presence of acoustic waves. Hence, low-Mach-number36

regions in the ow will constrain the time-step to impracticable small values, which is a waste of37

time and computational ressources in practice.38

Several methods have been proposed to handle this particular issue of low-Mach-number39

regions in ows. Basically two approaches can be distinguished:40

• The preconditioning methods, in which the time-derivatives in the Navier-Stokes equations41

are modi ed so as to optimise the eigenvalues of the compressible system by reducing the42

disparities between hydrodynamic and acoustic wave speeds. However, because the time-43

derivatives are modi ed, these methods are preferably applied to steady-state problems [9].44

Otherwise, they can be embedded through dual time-stepping algorithms [10, 11]. Most45

restricting, these methods cannot be generalised and must be properly designed for each46

particular problem investigated [12].47

• The projection methods, where an equation for the pressure is solved to enforce a diver-48

gence constraint on the velocity eld. Originally developed by Chorin [13] as a fractional-49

step method to solve incompressible ows, two di erent approaches were derived by re-50

formulating the compressible Navier-Stokes equations:51

– under the low-Mach-number assumption [14, 15], which remove the acoustic waves52

from the equations and only keeps hydrodynamic and entropic uctations;53
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– with a scaling with respect to the pressure, leading to the so-called Mach-uniform or54

all-speed methods [16, 17, 18].55

The domain of validity of the rst approach is of course restricted to low-Mach-number56

ows and no acoustic phenomena can be captured, while the second approach aims to57

provide a more general method that can handle ows featuring a wide range of Mach58

numbers, from virtually zero to supersonic shockwaves, and where all compressibility59

e ects are taken into account.60

For DNS of combustion applications, the implementation of a detailed chemistry solver and61

high-order discretisation methods is not straightforward. Whereas the Mach-uniform method62

has received little attention [19, 20] in the past few years, the low-Mach-number approach has63

received more attention [21, 22, 23]. Most algorithms published in the past are based on a64

fractional-step approach. Di erent ways to arrange the conservation equations are possible, but65

as recalled by Knikker [15] in his review paper, it is not possible to solve all of them in a conser-66

vative form unless an implicit approach is employed. This is, however, impratical in the context67

of DNS with detailed chemistry. For example Najm et al. [24], followed by Knio et al. [25],68

proposed to sacri ce the energy equation, solving it in its non-conservative form in the whole69

algorithm. Taking a di erent approach, Day and Bell [26] proposed a complex algorithm to70

solve the energy equation in its conservative form, but by compromising on the equation of state.71

This then required the implementation of a damping source term to control the deviation of the72

computed solution away from one which satis es the equation of state. The developments that73

followed these seminal works were focused on the implementation of adaptative mesh re nement74

[27] or the design of more e cient and stable algorithms [28], especially for the treatment of the75

di usion terms as well as the pressure equation appearing in the projection-correction procedure.76

The aim of the present paper is to introduce an e cient algorithm, with optimised numerical77

methods, to perform high- delity DNS of reacting ows under the low-Mach-number assump-78

tion, with detailed chemistry and quasi-spectral accuracy. The rst innovation of the present79

work is to compose a novel algorithm by selecting appropriate strategies and numerical methods80

from the prior works discussed above. The second innovation is that high-order discretisation81

schemes with spectral-like resolution are employed for all the variables solved. The pressure82

is solved with an FFT solver by means of the so-called spectral equivalence principle. To the83

authors’ knowledge such accuracy for the pressure has not been reached before in the context84

of simulations of low-Mach-number combustion with detailed chemistry. Finally, the third sig-85

ni cant innovation of the present paper is to propose an enhanced e cient method to solve the86

variable-coe cient pressure equation by employing a constant-coe cient spectral solver, allow-87

ing speed-up in achieving machine precision accuracy.88

The present paper is organised as follows. First, the governing reactive Navier-Stokes equa-89

tions under the low-Mach-number assumption are presented in Sec. 2. Next, the particular issues90

related to the treatment of the detailed chemistry, the di usion terms, and the solution of the91

pressure equation are presented in Sec. 3. A description of the whole algorithm and its imple-92

mentation in the HOLOMAC (High-Order LOw-MAch number Combustion) software is then93

given. In Sec. 4, the performance and accuracy of the algorithm are assessed with the help of94

several test problems. It is demonstrated that a second-order accuracy is achieved in time, while95

the spatial accuracy ranges from fourth-order to sixth-order, depending on the set of imposed96

boundary conditions.97
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2. Governing equations98

According to Giovangigli [29], a dimensional analysis of the momentum equation that ap-99

pears in the set of fully compressible reactive Navier-Stokes equations (see Poinsot and Veynante100

[30] for further developments) reveals that the spatial gradient of the pressure p is of orderO(M2)101

so that102

p(x, t) = p0(t) + p1(x, t)
O(M2)

, (1)

where p0(t) is spatially uniform and p1(x, t) is the uid dynamic perturbation, while M is the103

Mach number. Introducing the pressure split expressed in Eq. (1) in the state equation and taking104

the asymptotic limit M 0 leads to the following simpli ed state law:105

p0 = T
R
W
, (2)

where is the density, T the temperature, R the universal gas constant and W the mean molecular106

weight de ned as107

W = 1/
Ns

s=1

Ys

Ws
. (3)

Here, Ws and Ys are the molecular weight and the mass fraction of the species s, respectively, Ns108

being the total number of species present in the mixture.109

The meaning of Eq. (2) is that the thermodynamic pressure p0 is constant in space (but may110

vary in time) and it is decoupled from the uctuating part p1. As the Mach number is considered111

small, acoustic uctuations are neglected and p1(x, t) only embeds hydrodynamic perturbations.112

A rigorous mathematical derivation may be found in the seminal work of Majda and Sethian113

[21]. Conservation equations of continuity, momentum, energy and species transport can then be114

recast in the following low-Mach-number formulation, respectively:115

t
=

ui

xi
, (4)

ui

t
= Cui + Dui

p1

xi
, (5)

T
t
= CT + DT + RT +

1
Cp

dp0

dt
, (6)

Ys

t
= CYs + DYs + RYs s = 1, 2, . . . ,Ns, (7)

where ui and xi are the velocity and spatial coordinate along the i th direction, respectively.116

The convection C and di usion D terms in Eqs. (5-7) are de ned as117
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Cui =
u jui

x j
, Dui = x j

ui

x j
+

uj

xi

2
3

uk

xk
i j , (8)

CT = ui
T
xi

, DT =
1
Cp xi

T
xi
+

1
Cp

Ns

s=1

Cp,sVs,iYs
T
xi
, (9)

CYs = ui
Ys

xi
, DYs =

1 Vs,iYs

xi
, (10)

with118

Vs,iYs = Ds
Ys

xi
Ys

Ns

n=1

Dn
Yn

xi
. (11)

The source terms from chemical reactions are given by:119

RT =
1
Cp

Ns

s=1

hs s , RYs =
1

s. (12)

In the above equations, and are the dynamic viscosity and heat conductivity of the mix-120

ture, respectively, while Cp,s and Cp are the speci c heat capacity at constant pressure for the121

species s and the total mixture, respectively, and are related by the following expression:122

Cp =

Ns

s=1

YsCp,s. (13)

The terms s and hs represent the mass production rate and enthalpy, respectively, of the123

species s. The enthalpy term hs is expressed as:124

hs =
T

T0

Cp,s dT + h0
f ,s, (14)

where h0
f ,s is the enthalpy of formation of the species s at T0 = 298.15 K. Finally, Ds is125

the mass di usivity of the species s. Rigorous evaluation of Ds is very expensive and several126

numerical strategies have been proposed to signi cantly reduce the computational burden (see127

Ern and Giovangigli [31], Magin and Degrez [32]). These methods have generally been applied128

to high-speed ows. In the present work, for ease of implementation, di usion is approximated129

to rst-order by using an e ective-di usivity multicomponent di usion model formulated under130

the Hirschfelder-Curtiss [33] assumption:131

Ds =
1 Ys

j s X j/D js
. (15)

Here D js is the binary di usion coe cient between species j and s, and Xs is the mole fraction132

of species s. A well-known issue with this latter assumption is that the mass is not conserved,133

but the global mass can be maintained by adding a correction velocity term [30]. In the present134

mathematical formulation, this term appears in the right hand side of Eq. (11). Note also that135
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Soret (molecular species di usion due to temperature gradients) and Dufour (heat ux due to136

species mass fraction gradients) e ects have been neglected.137

The set of Eqs. (5-7) is subject to a constraint on the velocity eld, which will be used in138

the pressure-projection part of the fractional-step algorithm. This constraint can be derived by139

reformulating the continuity Eq. (4) as140

ui

xi
=

1 D
Dt
, (16)

where the RHS of Eq. (16) is obtained by di erentiating the equation of state along particle paths,141

leading to:142

ui

xi
=

1
T

DT
Dt
+

Ns

s=1

W
Ws

DYs

Dt
1
p0

dp0

dt
. (17)

Replacing the material derivatives that appear in Eq. (17) by their expressions in Eqs. (6) and (7)143

leads to the following expression of the velocity constraint:144

ui

xi
=

dp0

dt
P +D, (18)

where

P = 1
CpT

1
p0
, (19)

D = 1
T

(DT + RT ) +
Ns

s=1

W
Ws

DYs + RYs . (20)

In the context of a simulation with open boundaries, typically in ow/out ow conditions, the145

thermodynamic pressure p0 is static in time and set by atmospheric conditions. Consequently,146

the term dp0/dt vanishes in Eq. (18). However if the computational domain is closed, the ther-147

modynamic pressure p0 may change in time. As the total mass remains constant through the148

domain and is equal to the volume integral of the density, p0 can be expressed with the help of149

Eq. (2) and reads:150

p0 =
M0R

V T Ns
s=1

Ys
Ws

1
dV
, (21)

with M0 = V dV . As pointed out by Nicoud [14], the time derivative of p0 may be expressed151

by integrating Eq. (18) over a domain V to give the following equation:152

dp0

dt
=

V
ui/ xi dV

V
D dV

V
P dV. (22)

Since V ui/ xi dV = S un
i dS , S being the surface boundary, the velocities along normal n sum153

up to zero if hard walls or periodic boundary conditions are imposed everywhere. Hence, the154

term V ui/ xi dV in Eq. (22) vanishes.155
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3. Numerical methods156

3.1. Overall presentation of the algoritm157

The algorithm developed in the present paper is based on a fractional-step, segregated method.158

Basically the procedure can be summarised by the following two parts:159

1. The thermochemical system composed of the energy Eq. (6) and the species transport160

Eq. (7) is solved rst. During this step, temperature and species mass fractions are ad-161

vanced in time, making it possible to compute a new density through the equation of state162

(2).163

2. With this new density, the momentum Eq. (5) can be integrated to advanced in time the ve-164

locity elds. This step relies on a projection/correction method, where a Poisson equation165

for the pressure is solved to enforce the divergence condition imposed by the continuity166

Eq. (16).167

3.1.1. Operator-split techniques, sti integration and treatment of the di usion168

A particular issue encountered in Part 1 is with the wide range of time scales involved in the169

di erent operators comprising the thermochemical system. Indeed, due to the detailed chemistry,170

the evaluation of the chemical reactions is very sensitive to the state variables and it forms a sti171

system of ODEs to solve, which requires dedicated numerical methods that belong to the class172

of sti solver (see Hairer and Wanner [34] for a review). However, the set of ODEs has con-173

vection and di usion operators, and including them into a sti integrator would be particularly174

ine cient. The popular strategy employed to cope with this numerical challenge is to solve each175

term separately through an operator-split scheme. Knio et al. [25] and Day and Bell [26] imple-176

mented the so-called Strang operator-split (see Strang [35]), which is second order in time, and177

demonstrated its e ciency to solve the thermochemical system while keeping large time-steps178

and an acceptable computational cost. As recalled by Duarte et al. [36], a particular attraction of179

this strategy is that each operator can be solved with its own speci c numerical method, opening180

the way to tailor an overall algorithm.181

In the algorithm developed in the present paper, the following operator-split scheme is re-182

tained:183

H(tn + tn) = HC D
dt/2 HR

dt HC D
dt/2 H(tn), (23)

where H is the solution vector while H refers to the operators of convection (C), di usion (D)184

and reaction (R). Another combination HR
dt/2 HC D

dt HR
dt/2 was tested and compared to Eq. (23)185

for the freely propagating methane/air ames cases presented at §4.1, but virtually no di erence186

was noticed in the solutions. It is emphasised that within the order of time-steps employed for187

the whole algorithm, errors occurring in the operator-splitting procedure are negligible. Con-188

sequently, the operator-split scheme described at Eq. (23) is selected because as the evaluation189

of the reaction operators requires a signi cant computational e ort, it is practically more time-190

e cient to solve it only once.191

A second issue arising in Part 1 is the choice of a numerical method for the integration of192

the di usion operators. It is well known that the evaluation of di usion imposes a limit on the193

time-step to ensure the stability of the algorithm. This limitation can be reduced by treating the194

di usion terms with an implicit method. However, as recalled by Najm and Knio [37], the dif-195

fusion terms exhibit a non-linear dependence on the temperature and species mass fractions, and196
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are strongly coupled to the reaction operators. Hence, relying on an implicit method is particu-197

larly unattractive within the context of solving detailed reacting ows. To overcome this issue,198

Day and Bell [26] proposed to solve a temperature equation prior to an enthalpy equation in or-199

der to provide uid properties at the new time level. Another possibility proposed by Knio et al.200

[25] is to solve explicitly the di usion operators by decomposing the time integration in smaller201

fractional steps. However the major drawback of this approach is the large number of iterations202

required to ensure stability. For example, Yu et al. [28] reported the need to use more than one203

hundred fractional steps for the simulation of a hydrogen/air ame. Such poor performance mo-204

tivated Najm and Knio [37] to adopt an explicit Runge-Kutta-Chebyshev (RKC) method [38]205

instead of their initial choice based on the fractional-steps approach. They reported a number of206

iterations of approximately 32, which is a signi cant gain of computational time. However in this207

latter work, the authors reformulated the temperature equation into an evolution equation for the208

density, requiring evaluation of additional operators, which is not computationally e cient (see209

the discussion in the review of Knikker [15]). In the present paper, the temperature and species210

mass fraction equations are kept in their original form, and the RKC method is selected to inte-211

grate the HC D operators. Results presented in Sec. 4 show that only a dozen (approximately)212

iterations for the RKC method are enough to ensure stability, even for relatively high CFL num-213

bers of approximately 0.85. This value is close to the stability limit for explicit time integration.214

Moreover, for all cases studied, an estimation based on the von Neumann stability criterion for215

the di usion has been conducted. It shows that, compared to the RKC method, the maximum216

critical time-step would be about four orders of magnitude smaller with a forward explicit time-217

integration. Thus, the results demonstrate that the RKC method is very e cient to deal with218

relatively larger time-steps. Note that the uid properties and chemical reactions are computed219

with the CHEMKIN libraries [39]. As pointed out by Najm and Knio [37], the repeated eval-220

uation of uid properties through these libraries is computationally costly and they proposed to221

rely on extrapolation/interpolation techniques instead. Such an approach, particularly e cient222

and introducing negligible errors, is adopted in the present paper.223

Particular attention must be drawn to the convection operators. Indeed, they all involve the224

velocity vector, which is however not known at the next time-step. Thus, repeated evaluations225

of the convection operators at each RKC stage would require an extrapolation of the velocities.226

Instead, the time integration of the convection operators is performed once with a linear multi-227

step method, namely a second-order Adams-Bashforth (AB2) scheme. Hence, convection terms228

are imposed during the integration of di usion operators as constant source terms. Yu et al. [28]229

pointed out that merging the term appearing in the right hand side of DT (see Eq. (9)) into the230

di usion integration procedure would increase the computational burden. Instead, they merged231

this term with the convection operator to impose it as a constant source term. It was found in the232

development of the present algorithm that such a choice leads locally to a lack of conservation233

of the mass, reducing strongly the accuracy of the algorithm. Hence, despite the additional234

computational cost, this term is repeatably evaluated during the integration procedure to ensure235

mass conservation.236

3.1.2. Projection methods and treatment of the pressure237

The pressure-projection step employed in Part 2 is widely pointed out in the literature as238

posing a particular di culty, playing a crucial role in determining the numerical stability [14, 15].239

The origin of this method goes back to the fractional-step, projection method developed for240

incompressible ows by Chorin [13]. Basically, the velocity and the pressure are decoupled in241

the momentum Eq. (5); after the time advancement of the velocity, a Poisson equation for the242
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pressure is solved to project the intermediate velocity onto a space that enforce a divergence-243

free constraint. In the context of low-Mach-number ows, the variable density appears in the244

Poisson equation. In the fractional-step method, the constraint on the velocity eld is imposed245

from already known values computed at the new time level, and can be formulated in two ways:246

• A rst approach is to impose the divergence of the momentum ( u), which is known247

through the continuity Eq. (4). This amounts to computing and imposing the time deriva-248

tive of the density at the new time level. It leads to a constant-coe cient Poisson equation249

requiring the evaluation of the operator 2.250

• A second approach is to impose the divergence of the velocity u, which is known by taking251

the material derivative of the equation of state, as detailed in Eqs. (16-17). It leads to252

a variable-coe cient Poisson equation requiring the evaluation of the operator (1/ ),253

where varies spatially.254

The numerical solution of the constant-coe cient Poisson equation is the most straightfor-255

ward and can be done by means of direct solvers. However this approach presents two ma-256

jor drawbacks: rst, it has been demonstrated by Nicoud [14] that in the inviscid limit, un-257

like the variable-coe cient Poisson equation approach, this formulation does not recover the258

divergence-free velocity constraint. Second, it has been widely reported in the literature that the259

time-derivative of density is a source of instability in the Poisson equation, limiting the method to260

small amplitude variations of the density (the ratio value of 3 is commonly reported). Najm et al.261

[24] proposed a predictor-corrector scheme that extended the stability to density ratios of 10.262

During the development of the present paper, this predictor-corrector approach has been tested263

and it has been observed that the stability also depends on the spatial steepness and time evolution264

of the density ratio. In the context of autoignition of an heptane/air mixture presented in §4.3,265

this approach has been found to be always unstable for density ratios greater than approximately266

7.267

Such disappointing results have motivated the adoption of an approach based on the variable-268

coe cient Poisson equation. Although not shown in the present paper, numerical tests have269

validated the strongly stable behaviour of this approach for large and steep density ratios. How-270

ever, the major drawback reported in the literature is that this equation is challenging to solve271

numerically. In the context of low-Mach-number reactive ows, many of the algorithms pub-272

lished rely on iterative solvers. Yu et al. [28] and Safta et al. [27] used multigrid methods with a273

nite-di erence discretisation, reaching second and fourth-order accuracy, respectively. On the274

other hand, Knikker [15] employed a second-order Krylov-based solver but reached fourth-order275

accuracy by using an iterative residual correction method, the residuals being computed with276

compact schemes. Moreover, Desjardins et al. [40] reached similar high-order accuracy with a277

combination of spectral and Krylov-based methods. Unlike the previous works cited above, a278

constant-coe cient spectral solver based on fast Fourier transforms and pencil domain decom-279

position is employed in this work as a novel contribution to the literature. It is shown in Sec. 4280

that sixth-order accuracy is reached for the pressure.281

The numerical methods presented in this paper are implemented in the HOLOMAC soft-282

ware, which is based on the Incompact3D framework [41, 42] and the 2DECOMP&FFT li-283

braries [1]. Details about the spectral solver, its implementation and the parallelisation tech-284

niques can be found in the aforementioned references. Note that the FFTW3 libraries [43] have285

been implemented to perform the Fast Fourier Transforms (FFT) employed by the spectral solver286
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for the pressure. The mathematical description of the algorithm for the time integration, as well287

as the numerical methods for the spatial discretisation, are now presented below.288

3.2. Temporal integration289

3.2.1. Step 1: Computation of explicit terms290

The rst step of the present algorithm is to compute the explicit terms that will be imposed as291

source terms during the time integration of the di usion operators with the RKC method. These292

source terms embed the explicit time integration of the convection terms Cui , CT and CYs from the293

time-step n to n+1 with an AB2 scheme, as well as the spatial gradient of hydrodynamic pressure294

p1 and the time derivative of the thermodynamic pressure p0 that appear in the momentum Eq. (5)295

and the energy Eq. (6), respectively. The source terms S ui , S T and S Ys for the momentum, energy296

and species transport equations are expressed as follows:297

S ui = (1 + t) Cn
ui tCn 1

ui

pn
1

xi
, (24)

S T = (1 + t) Cn
T tCn 1

T +
1

(1 + t) nCn
p t n 1Cn 1

p

dp0

dt
, (25)

S Ys = (1 + t) Cn
Ys tCn 1

Ys
, (26)

where298

dp0

dt
=

tn 2 1 + tn

tn 1 pn
0 tn 2 + tn + tn tn 2

tn 1 pn 1
0 + tn pn 2

0

tn 1 tn 2 (27)

is the extrapolation of the time derivative of the thermodynamic pressure computed over the new
time-step, and with

t =
1
2

tn

tn 1 , (28)

tn = tn+1 tn, (29)

tn 1 = tn tn 1, (30)

tn 2 = tn 1 tn 2. (31)

Note that the evaluation of the time derivative of p0 through Eq. (22) would require all the299

di usion and reaction operators to be computed twice, as well as two volume integrations over300

the full domain to be performed. In order to save computational time, this procedure is only per-301

formed at the rst iteration of a simulation, the remaining one being computed with the discrete302

formulation expressed in Eq. (27). Of course in the case of an open domain with in ow/out ow303

boundary conditions, dp0
dt = 0.304

3.2.2. Step 2: RKC integration of scalars di usion terms over the rst half time-step305

The di usion terms Dui , DT and DYs are integrated from the time-step n to n + 1/2 with306

the explicit Runge-Kutta-Chebyshev (RKC) method presented by Verwer et al. [38]. The source307

terms computed in §3.2.1 are imposed during each iteration of the RKC method. The total308
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number of iterations K is a free parameter chosen by the user, but the RKC scheme requires at309

least two iterations, viz. K 2.310

The starting values, denoted by superscript 0, are values at time-step n:311

T 0 = T n, (32)

Y0
s = Yn

s , (33)
0 = n. (34)

During the rst stage of integration, denoted by superscript 1, values are updated using the312

following relations:313

T 1 = T 0 + ˜1
tn

2
D0

T + S T , (35)

Y1
s = Y0

s + ˜1
tn

2
D0

Ys
+ S Ys , (36)

1 =
pn

0

RT 1 Ns
s=1

Y1
s

W1
s

. (37)

Integration over the remaining stages of integration, denoted k with k = 2, . . . ,K, is per-314

formed by employing the following relations:315

T k = (1 k k) T 0 + kT k 1 + kT k 2 + ˜k
tn

2
Dk 1

T + S T + ˜k
tn

2
D0

T + S T , (38)

Yk
s = (1 k k) Y0

s + kYk 1
s + kYk 2

s + ˜k
tn

2
Dk 1

Ys
+ S Ys + ˜k

tn

2
D0

Ys
+ S Ys , (39)

k =
pn

0

RT k Ns
s=1

Yk
s

Wk
s

. (40)

At the end of the integration, values at time-step n + 1/2 are given by316

T n+1/2 = T K , (41)

Yn+1/2
s = YK

s , (42)
n+1/2 = K . (43)

Note that in order to save a signi cant amount of computational time, the thermodynamic pa-317

rameters Ds, Cp and are not computed at each stage through the CHEMKIN routines, but318

extrapolated from previous values (see §3.4 for more details).319

The coe cients appearing in all stages of integration are given by320

˜1 = b1 1, (44)

k =
2bk 0

bk 1
, k =

bk

bk 2
, ˜k =

2bk 1

bk 1
, ˜k = ak 1 ˜k, (45)
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where ak, bk, 0 and 1 are given by321

ak = 1 bkTk ( 0) , (46)

b0 = b2, b1 =
1

0
, bk =

Tk ( 0)

Tk ( 0)
2 , (47)

with

0 = 1 +
K2 , 1 =

Tk ( 0)
Tk ( 0)

. (48)

Note that in the remainder of the present paper, the value of = 10 is chosen (see discussion at
§4.4). Moreover, Tl(x) is the rst kind Chebyshev polynomials:

Tk(x) = 2xTk 1(x) Tk 2(x), (49)
T0(x) = 1, (50)
T1(x) = x. (51)

3.2.3. Step 3: Sti integration of reactive terms over a full time-step322

During this step, the reactive terms RT and RYs are integrated over a full time-step tn. These323

terms involve the computation of chemical reaction rates that are very sensitive to temperature324

and species mass fractions. Thus, it forms the following sti system of ODEs:325

T T =
tn+1

tn
RT dt,

Ys Ys =
tn+1

tn
RYs dt.

(52)

The starting values are denoted by the superscript and are the ones computed at the end326

of §3.2.2. Note that as the chemical reactions do not involve a variation of mass, the density is327

kept constant during the whole integration stage, and is only updated at the end of the process,328

denoted by the superscript :329

=
pn

0

RT Ns
s=1

Ys
Ws

(53)

Many sti solvers are available in the literature to integrate Eq. (52). DVODE [44], RADAU5330

[34] and SEULEX [34] have been implemented in the framework of HOLOMAC. All of these331

solvers rely on relative and absolute tolerance values to reach convergence. Assessment of per-332

formance and accuracy of these solvers is out of the scope of the present paper, and DVODE333

is retained for the remainder of the present paper, with both relative and absolute tolerance val-334

ues set to 10 14, respectively. With such low values, it has been observed that all solvers give335

virtually the same results.336
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3.2.4. Step 4: RKC integration of scalars di usion terms over the last half time-step337

This step is very similar to §3.2.2, using T , Ys and as initial values and the same338

number of iterations K. At the end of this step, T and Ys are available at the new time tn+1 and339

boundary conditions for temperature and species mass fractions can be applied. Note that in the340

case of an out ow boundary condition, an Orlanksi-type boundary condition [45] is employed to341

convect the physical variables out of the domain.342

In the case of a closed domain, the new thermodynamic pressure pn+1
0 can be evaluated by343

applying Eq. (21). Hence, by knowing T n+1, Yn+1
s and pn+1

0 , the new density n+1, di usion344

coe cients Dn+1
s , n+1 and n+1, as well as Cp

n+1 can now be updated via the CHEMKIN345

routines.346

3.2.5. Step 5: Computation of the divergence velocity constraint347

Prior to the computation of the momentum equation, the divergence velocity constraint that348

will be applied during the pressure projection step can be computed with the nal values at the349

end of §3.2.4. Similarly to §3.2.1, this velocity constraint could be discretised directly by apply-350

ing Eqs. (18) and (22), but in order to save computational time and avoid redundant evaluation351

of di usion and reaction operators, the semi-discrete approach proposed by Yu et al. [28] is352

adopted:353

un+1
i

xi
=

1
pn+1

0

dp0

dt

n+1
+

1
T n+1 1 + t

DT
Dt

n+ 1
2

t
DT
Dt

n 1
2

+

Ns

s=1

W
n+1

Ws
1 + t

DYs

Dt

n+ 1
2

t
DYs

Dt

n 1
2

, (54)

with354

dp0

dt

n+1
=

tn + tn 1 2
( tn)2 pn+1

0 tn + tn 1 2
pn

0 + ( tn)2 pn 1
0

tn tn 1 tn + tn 1 , (55)

DT
Dt

n+ 1
2

=
T n+1 T n

tn (1 + t) Cn
T tCn 1

T , (56)

DYs

Dt

n+ 1
2

=
Yn+1

s Yn
s

tn (1 + t) Cn
Ys tCn 1

Ys
. (57)

Note that unlike the formulation of Yu et al. [28], Eqs. (54-57) include the possibility of355

time-step variations. In the above expressions, t is de ned by Eq. (28) and t is expressed as:356

t =
tn

tn + tn 1 . (58)

3.2.6. Step 6: RKC integration of momentum di usion terms over a full time-step357

During this step, the momentum equation is advanced in time through the RKC integration358

of di usion terms over a full time-step. Note that the source terms include the gradients of359

hydrodynamic pressure from the previous time-step. According to Guermond et al. [46], this360

technique leads to a correction in pressure of the velocity elds and increases the accuracy of361
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the projection method to second-order. Note also that the stages of integration are denoted l =362

2, . . . , L. The following relations are then employed:363

( ui)0 = ( ui)n , (59)

( ui)1 = ( ui)0 + ˜1 tn D0
ui
+ S ui , (60)

( ui)l = (1 l l) ( ui)0 + l ( ui)l 1 + l ( ui)l 2 + ˜ l tn Dl 1
ui
+ S ui + ˜ l tn D0

ui
+ S ui .

(61)

Similarly to the RKC integration of di usion terms in the scalars equations described in364

§3.2.2, the density and viscosity are interpolated from tn and newly known tn+1 values (see365

§3.4 for more details).366

At the end of this step, the velocity eld does not satisfy the divergence constraint formulated367

in Eq. (16), and is at a provisional state denoted by the superscript :368

( ui) = ( ui)L . (62)

The boundary conditions for momentum are applied at the end of this step. In the case of an369

out ow boundary condition, an Orlanksi-type boundary condition [45] is employed to convect370

the momentum ( ui) out of the domain. Note that according to Gresho [47] the conservation of371

mass is enforced to machine precision accuracy by correcting the mass ux leaving the domain372

to exactly match the entering mass ux imposed at the inlet boundary condition.373

3.2.7. Step 7: Pressure projection374

In the fractional-step method, the nal velocity eld un+1 is obtained by correcting the pro-375

visional velocity eld ui with the gradients of the hydrodynamic pressure, which is obtained by376

solving the following variable-coe cient Poisson equation:377

xi

1
n+1

p
xi
=

1
tn

ui

xi

un+1
i

xi
, (63)

where p = pn+1
1 pn

1. Note that the last term of the RHS has been computed in §3.2.5 using378

Eq. (54).379

In the present paper, three methodologies based on a FFT spectral solver are investigated to380

e ciently solve the non-linear Poisson Eq. (63):381

• Method I: Fully implicit - iterative382

The basic brute-force approach suggested by Nicoud [48] is to solve Eq. (63) with the383

following iterative procedure:384

2 pq

x2
i
=

xi
1

n+1
0
n+1

pq 1

xi
+

n+1
0

tn

ui

xi

un+1
i

xi
. (64)

Nicoud [48] recommends for the value of n+1
0 a plane averaging of the density. However in385

the present algorithm, it was found that such a choice prevents the convergence of Eq. (64),386

which only converge for n+1
0 = min n+1 . Each sub-iteration q in Eq. (64) is solved387
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exactly using a spectral solver based on Fast Fourrier Transforms. Eq. (64) is considered388

converged when389

||pq pq 1|| , (65)

where ||.|| is the L2-norm, and is a tolerance parameter set by the user.390

The provisional velocity eld is then corrected by applying the following relation:391

un+1
i = ui

tn

n+1

pq

xi
, (66)

where pq is the solution of the last iteration of Eq. (64).392

As shown in §4.3, inaccuracy in the evaluation of the pressure leads to errors in the ve-393

locity eld when applying Eq. (66). Resolution of the projection/correction step up to the394

machine precision then requires very low values for , typically of the order of 10 12, lead-395

ing to a signi cant total number of iterations q, typically of the order of several hundreds.396

Note that in order to accelerate the convergence, an initial starting value p0 is provided397

with the help of the extrapolation pn+1 = 2pn pn 1, so that:398

p0 = 2pn pn 1 pn. (67)

• Method II: Semi implicit - direct399

In order to save computational time, an interesting technique proposed by Dodd and Fer-400

rante [49] is to split Eq. (63) into a variable part p0 provided explicitly by an extrapolation401

of the pressure (see Eq. (67)), while the other term p is solved within a constant-coe cient402

Poisson equation requiring only one evaluation of the FFT spectral solver, i.e.403

2 p
x2

i
=

xi
1

n+1
0
n+1

p0

xi
+

n+1
0

tn

ui

xi

un+1
i

xi
. (68)

Of course Eq. (68) is very similar to Eq. (64) in method I. The di erence in method II is404

that the correction of the provisional velocity eld now includes the contributions of both405

the implicit and explicit pressure terms, i.e.406

un+1
i = ui tn 1

n+1
0

p
xi
+

1
n+1

1
n+1
0

p0

xi
. (69)

As demonstrated by Dodd and Ferrante [49], this method is e cient when the gradients of407

pressure are smooth in time, which is not always the case in combustion applications. As408

shown in §4.3 with a test case of autoignition of a heptane/air mixture, this method, while409

the fastest, leads to errors of order 10 3 during the pressure correction step.410

• Method III: Semi implicit - iterative411

Method III is a mix of methods I and II. The pressure p is computed with Eq. (64), while412

the correction of the velocity eld is obtained with the following variant of Eq. (69):413
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un+1
i = ui tn 1

n+1
0

pq

xi
+

1
n+1

1
n+1
0

pq 1

xi
. (70)

As shown in §4.3, this method is very e cient. Based on the two test cases investigated,414

the machine precision accuracy in the projection/correction step is achieved for values of415

the tolerance parameter ranging from 10 8 to 10 6, which represents a signi cant gain in416

the required total number of iterations and thus, computational time.417

Once the nal velocity eld un+1
i is updated, the new hydrodynamic pressure pn+1

1 can be418

updated with the following relation:419

pn+1
1 = pn

1 + pq. (71)

At this step, the velocities un+1
i , temperature T n+1 and species mass fractions Yn+1

s are spa-420

tially ltered (see §3.3) in order to remove small oscillations that could destabilise the algorithm.421

Hence, the computation of the next time-step can begin with §3.2.1.422

3.3. Spatial discretisation and ltering423

The domain of length lx is discretised along the x axis by a uniform distribution of Nx nodes424

xi, with xi = (i 1) x for 1 i Nx. In the present algorithm, the spatial derivatives are425

computed implicitly with high-order nite di erence compact schemes. Given a generic function426

f (x), the rst derivative f (x) is computed with the following expression:427

fi 1 + fi + fi+1 = a
fi+1 fi 1

2 x
+ b

fi+2 fi 2

4 x
. (72)

As shown by Lele [50], the coe cients = 1/3, a = 14/9 and b = 1/9 give a quasi-spectral428

sixth-order accurate approximation of the derivatives. Of course this procedure is the same along429

the y and z directions if the domain is 2D or 3D.430

A particular issue concerns the computation with compact schemes of the di usion operators,431

which can be de ned in a generic way with the following expression:432

xi
D

xi
, (73)

where is the state variable and D the associated di usion coe cient. Two discretisation tech-433

niques can be employed to evaluate Eq. (73):434

1. by taking the rst derivative of , multiplying by D and then taking again the rst deriva-435

tive of the whole product;436

2. by expanding Eq. (73) with the chain rule, leading to:437

D
xi xi

+D
2

x2
i
. (74)

Under the compact scheme formulation, the second derivative that appears in Eq. (74) is438

approximated by the following relation:439

fi 1 + fi + fi+1 = a
fi+1 2 fi + fi 1

2 x2 + b
fi+2 2 fi + fi 2

4 x2 , (75)
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where fi represents the second derivative of a function f (x) at a point xi, and where the440

coe cients = 2/11, a = 12/11 and b = 3/11 have been chosen to ensure sixth-order441

accuracy with the similar spectral resolution as for the rst derivative.442

As pointed out by Cook and Riley [23], the second discretisation technique is free of grid-443

to-grid oscillations but the conservative form of the di usion operator is not maintained. On the444

other hand, the rst discretisation technique is conservative but develops grid-to-grid oscillations,445

which can however be removed by spatial ltering.446

In the present algorithm, care must be taken in the choice of a discretisation technique. It447

has been found that the second discretisation technique leads to signi cant errors in mass con-448

servation when applied to the computation of the di usion operators DT and DYs in the energy449

Eq. (6) and species mass fraction transport Eq. (7). However the rst discretisation technique is450

problematic when applied to the di usion operator Dui in the momentum equation Eq. (5), be-451

cause it introduces spatial oscillations in the velocity eld prior to the pressure-projection step.452

Even with a spatial ltering at this step, numerical inconsistencies have been observed between453

ui / xi and un+1
i / xi during the evaluation of the RHS of Eq. (63), leading to errors in the nal454

velocity eld. In summary, DT and DYs are evaluated with the discretisation technique 1, while455

Dui is evaluated with the discretisation technique 2.456

Periodically at the end of a time-step, a spatial ltering is applied along all directions to the457

state variables T , Ys and ui. According to Lele [50], the spatial ltering operator can be done458

with the help of compact lters by applying the following relation:459

f i 1 + f i + f i+1 = a fi +
b
2

( fi+1 + fi 1) +
c
2

( fi+2 + fi 2) +
d
2

( fi+3 + fi 3) , (76)

where f is the ltered variable while the following coe cients represent a sixth-order low-pass460

lter:461

a =
1

16
(11 + 10 ) , (77)

b =
1

32
(15 + 34 ) , (78)

c =
1

16
( 3 + 6 ) , (79)

d =
1
32

(1 2 ) . (80)

Note that 0.5 < < 0.5 is a parameter freely set by the user to control the spectrum of the462

lter. A value of = 0.5 implies no ltering, while reducing moves the cut-o frequency to463

low-band values. Note that a value of = 0.48 has been chosen for all the simulations conducted464

in the present paper.465

When non-periodic boundary conditions are imposed, single sided formulations are used for466

the approximation of the rst and second derivatives. For the boundary nodes, the derivatives467

have the form468

f1 + 2 f2 =
1

2 x
( 5 f1 + 4 f2 + f3) , (81)

f1 + 11 f2 =
1
x2 (13 f1 27 f2 + 15 f3 f4, ) (82)
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that are third-order accurate, while at adjacent nodes the following fourth-order accurate formu-469

lations are used:470

1
4

f1 + f2 +
1
4

f3 =
3
2

f3 f1
2 x

, (83)

1
10

f1 + f2 +
1

10
f3 =

6
5

f3 2 f2 + f1
x2 . (84)

For spatial ltering with compact schemes, several formulations for points near boundaries can471

be found in the review paper of Gaitonde and Visbal [51].472

Note that the pressure is discretised on a staggered grid and interpolations and derivatives473

are performed at mid-points via sixth-order compact schemes. Concerning the FFT solver, the474

transposition between the physical space and the spectral space is performed under the so-called475

spectral equivalence principle. Basically, this means that derivations/interpolations in the phys-476

ical space lead strictly to the same results in the spectral space. Recall that the present HOLO-477

MAC code is built upon the Incompact3D framework and all of these procedures are discussed478

in detail in the reference paper [41].479

3.4. Extrapolation/Interpolation of thermodynamic properties480

The temporal integration of di usion operators Dui , DT , DYs through the RKC stages requires481

the knowledge of thermodynamic properties between two computational time-steps, say tn and482

tn+1. Computing these properties with the CHEMKIN libraries is computationally costly. Re-483

peated evaluation within the RKC stages would drastically increase the computational burden.484

Najm and Knio [37] proposed to estimate the intermediate values via extrapolation and interpo-485

lation procedures. It was also demonstrated that such approaches recover an overall second-order486

accuracy in time. Thus, the direct evaluation of the properties with CHEMKIN libraries is only487

performed once for each time-step at the end of step §3.2.4.488

Denoting tRKC as the intermediate time, i.e. tn tRKC < tn+1, the generic thermodynamic489

parameter is evaluated as follows:490

• In steps §3.2.2 and §3.2.4, values at time tRKC are extrapolated with known values at tn and491

tn 1, i.e.492

RKC = n +
tRKC tn

tn
n n 1 , (85)

where refers toDs, Cp and .493

• In step §3.2.6, values at time tRKC are interpolated from known values at tn and tn+1, i.e.494

RKC = n +
tRKC tn

tn
n+1 n , (86)

where refers to and .495
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4. Results496

In this section the performance of the numerical methods developed in Sec. 3 is assessed.497

First, temporal and spatial convergence tests are performed for a freely propagating 1D methane/air498

ame. Two con gurations are investigated:499

• an open domain, where unburnt fuel/air mixture enters the domain at the intake boundary500

with the ame speed;501

• a periodic closed domain where two ames propagate in opposite directions into the un-502

burnt mixture from a hot spot.503

Both cases exhibit an overall second-order accuracy in time, validating the implementation of504

a Strang operator-split strategy and the pressure-projection procedure into a fractional-step al-505

gorithm. As expected, the algorithm in a periodic closed domain shows sixth-order accuracy in506

space, while the use of in ow/out ow boundary conditions in a open domain gives an overall507

spatial accuracy of order 4.5, due to the degradation of the precision of compact schemes near508

the boundaries. Following on, a second test problem concerning a 2D vortex interacting with a509

ame is reported in §4.2.510

Another test problems are employed in §4.3 to evaluate the three methods presented in §3.2.7511

to solve the variable-coe cient Poisson equation. In a rst test problem, a heptane/air mixing512

layer is established and the autoignition of the mixtures is investigated in a 1D closed domain.513

In this problem, time-evolving strong gradients of the physical variables are generated, leading514

to di culties in the convergence of the pressure equation. It is shown that method III e ciently515

achieves machine precision accuracy while maintaining a low number of iterations when solv-516

ing the variable-coe cient Poisson equation for the pressure. Following on, the same study is517

extended to the 2D vortex/ ame interaction test case.518

In §4.4, numerical experiments are performed with the RKC method to study the in uence519

of the number of integration stages on the stability behaviour. Finally, in §4.5, 3D simulations of520

a premixed turbulent ame in a lean methane/air mixture are reported, demonstrating the ability521

of the numerical algorithm to handle complex turbulent reacting ows.522

In the remainder of the paper, results computed with the numerical methods detailed in Sec. 3523

are referred by HOLOMAC, which is the name of the software developed during the present524

study to perform the numerical simulations.525

4.1. Temporal and spatial convergence tests526

4.1.1. One-dimensional freely propagating premixed methane ame in an open domain527

The physical problem consists of a freely propagating premixed methane (CH4)/air ame528

in a one-dimensional domain. All ames are computed with the skeletal mechanism for lean529

methane-air developed by Sankaran et al. [52], composed of 17 species and 73 reactions. More-530

over, the fresh gas is a premixed mixture of methane and air, with a temperature set to 810 K531

and an equivalence ratio of = 0.6. Hence, Y0
CH4
= 0.0338, Y0

O2
= 0.2252 and Y0

N2
= 0.741.532

In the present simulation, the pro le of a 1D methane/air premixed ame is computed with the533

reference code CHEMKIN [39], and imposed as an initial condition for the simulation with534

HOLOMAC. The relative and absolute tolerances for the CHEMKIN computation are set to535

10 12 and 10 8, respectively. The total length of the computational domain is 0.04 m, and the536

mesh grid is progressively re ned with an adaptative technique. At convergence, the solution is537

discretised on approximately 9000 points and the computed ame speed is uf = 0.3202 m.s 1.538
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For this con guration, the thermodynamic pressure p0 is set to 2 × 106 Pa. The ame is kept539

stationary in the domain by setting the in ow velocity uf to be the ame speed.540

The premixed ame pro le is interpolated from CHEMKIN into HOLOMAC on a domain541

of 2 mm, the ame front being located at 1 mm. In order to ensure a consistent initial condition to542

perform convergence test, a preliminary computation is performed to let the ame pro le adapt543

to the mesh grid of the new solver. As the in uence of numerical errors must be as small as544

possible, the domain is discretised with 2001 points, which represents a size between each grid545

points of x 1 m. Moreover, a very small time-step of t = 1 × 10 8 s, which corresponds546

to a convective CFL number of 0.008, is set to minimise splitting errors between convection-547

di usion-reaction operators. The absolute and relative tolerances for the DVODE solver are548

both set to 10 14, while method III is used to solve the variable-coe cient Poisson equation549

with a tolerance parameter set to 10 10. The number of stages for the RKC method is set to550

K = L = 10 for the integration of di usion terms. Note that for an explicit integration of the551

di usion terms without the RKC method, the von Neumann stability criterion for the di usion552

would impose a theoretical maximum time-step of approximately 3.5 × 10 12 s, which is four553

orders below the selected time-step. At 1 ms of the physical simulation time, a solution S init is554

stored.555

The typical structure of the computed premixed methane ame is depicted in Fig. 1. The556

solid line represents the initial solution interpolated from the CHEMKIN simulation, while the557

dot symbols represent the solution S init computed with HOLOMAC. Di erences are very small.558

Note that the temperature, while not depicted, follows a trend similar to the velocity pro le. The559

temperature of unburnt and burnt mixtures are 810 K and 2073 K, respectively. As shown in560

the bottom of Fig. 1, the in uence of numerical errors is visible in the computation of radical561

species, for example typically O(10 6) for YHCO and YH. These results validate the ability of the562

algorithm and the numerical methods developed in the present paper to accurately simulate a563

reacting ow with detailed chemistry.564

Convergence tests are evaluated with the L2-norm of the di erence between the computed565

and the reference solutions, which is expressed as follows:566

L2(S sol S re f ) =
sol re f

2

Nx
, (87)

where subscripts sol and ref identify the computed and reference solutions, is the variable567

investigated, and Nx is the number of points of the mesh grid. The convergence rate is then568

computed by best- tting the curve formed by successive L2-norms.569

Recall that S init is the solution computed on the 2001 points grids ( x 1 m) with a time-570

step of 1 × 10 8 s at 1 ms after the CHEMKIN pro le is tted on the grid. The procedures to571

perform convergence tests are as follows:572

• for the spatial accuracy, the solution S init is taken as the reference S re f . The time-step is573

kept at 1× 10 8 s and simulations are performed over a physical time of 0.5 ms on succes-574

sive mesh grids of 1001, 501, 251 and 151 points, which represents x 2, 4, 8, 13.25 m,575

respectively;576

• for the temporal accuracy, the reference solution S re f is formed by interpolating S init on a577

mesh grid of 1001 points ( x 2 m). Simulations are performed over a physical time of578

0.1 ms with successive time-steps of t = 2, 3.125, 4, 6.25, 8 × 10 8 s.579
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Figure 1: Structure of a steady one-dimensional premixed methane/air ame at 2 × 106 Pa and equivalence ratio of
= 0.6. Solid line ( ): initial solution interpolated from a CHEMKIN simulation. Symbols (•): solution S init

computed at 1 ms with HOLOMAC on a ne mesh ( x = 1 m) and a very small time-step ( t = 1 × 10 8 s).
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Variable Global rates of convergence
Spatial Temporal

T 4.6 2.27
u 4.57 2.27
p1 4.52 2.18

4.78 2.27
YCH4 4.45 2.30
YO2 4.54 2.27
YCO2 4.63 2.22
YCO 3.84 2.33
YH2O 4.55 2.29
YOH 3.63 2.17
YCH3 3.25 2.23
YHCO 2.81 1.60
YH 3.30 1.99

Table 1: Spatial and temporal global rates of convergence for the premixed 1D methane/air ame in an open domain.

t range (s) T u p1 YCH4 YHCO

(4 6.25 8) × 10 8 1.66 1.66 1.65 1.66 1.66 1.31
(3.125 4 6.25) × 10 8 2.06 2.06 2.04 2.06 2.08 1.44
(2 3.125 4) × 10 8 2.40 2.40 2.33 2.40 2.43 1.63
(1 2 3.125) × 10 8 2.76 2.76 2.52 2.78 2.83 1.97

Table 2: Partial temporal convergence rates over a selected range of time-steps for the premixed 1D methane/air ame in
an open domain.

Results are gathered in Table 1 for a selection of variables. The global spatial rate of conver-580

gence is approximately O(4.5). This result was expected, because as described at §3.3 the order581

of accuracy of the spatial discretisation schemes is degraded to third-order at boundary points and582

fourth-order accuracy for adjacent points. Due to the implicit nature of compact schemes, despite583

the sixth-order accuracy for the remaining interior nodes, this degradation at boundaries intro-584

duces then an error O(3) in the whole domain that impede the global spatial rate of convergence.585

With a balance between sixth-order and third-order accuracy for the discretisation schemes, an586

overall accuracy O(4.5) can be expected, which is con rmed by results presented in Table 1. As587

explained above, species with very small mass fractions are more sensitive to numerical errors588

and it is observed that the global spatial convergence rate for such variables can be a ected and589

reduced to approximately O(3).590

Furthermore, results reported in Table 1 show a temporal global rate of convergence of order591

2. This result was expected and it validates that an implementation of a Strang operator-split592

strategy and a pressure-projection procedure into a fractional-step algorithm ensure a second-593

order accuracy in time. One can notice that the global temporal convergence rate of YHCO, an594
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intermediate species of low concentration, is only 1.60. Table 2 presents the temporal conver-595

gence rates for a selected ranges of time-steps. These results reveal that the order of accuracy596

increases as t is reduced. Moreover, the temporal convergence rate of YHCO reach second-order597

accuracy slower than other selected variables. This behaviour may be explained by the fact that598

HCO is a species sensitive to the evaluation of chemical reactions, and is more prone to be af-599

fected by errors introduced by the operator-split procedure. Of course such statement depends600

on the mechanism employed for chemistry and the con guration of the ow. In the context601

of methane/air ame, Safta et al. [27] also observed, with a similar chemistry mechanism (16602

species and 46 reactions), the same behaviour for the temporal convergence of YHCO.603

4.1.2. One-dimensional freely propagating premixed methane ame in a periodic closed domain604

This test case is devoted to assess the spatial and temporal rate of convergence of the numeri-605

cal methods when the domain is fully closed by periodic boundary conditions. Moreover, unlike606

the test case investigated previously in §4.1.1, the time derivative of the thermodynamic pressure607

(see Eqs. (27) and (55)) is now involved in the energy Eq. (6) and the divergence constraint ex-608

pressed by Eq. (54). Thus, p0 is expected to evolve. Although not detailed in the present paper,609

the algorithm with time evolving p0 has been validated against CHEMKIN with a test case of610

autoignition of a homogeneous heptane/air mixture in a periodic, closed domain.611

The initial solution S init is obtained for the fresh premixed mixture of methane and air of612

equivalence ratio of = 0.6 as described at the beginning of Sec. 4.1. The imposed temperature613

follows a Gaussian pro le:614

T = T f resh + Tamp exp
1 lx/2

2

(88)

where T f resh = 810 K is the temperature of the unburnt mixture and Tamp = 1500 K is the615

maximum amplitude of the Gaussian, lx = 20.48 mm being the total length of the computational616

domain and = 0.5 mm the width of the Gaussian. The initial temperature pro le is depicted at617

the top of Fig. 2. Moreover, a velocity of 1 m.s 1 is uniformly imposed on the ow.618

Figure 2 presents the ame structure for three physical times: t = 0.50 ms, t = 1.50 ms619

and t = 2.50 ms. Very shortly after the beginning of the simulation, the deposition of a hot620

temperature spot ignites the mixture, creating then two ame fronts propagating in opposite621

directions. Although not shown, the two ames merge at approximately t = 3 ms: the fresh622

premixed mixture is then totally consumed and only burnt gas remains in the domain.623

The procedures to perform convergence tests are described as follow:624

• for the spatial accuracy, the time-step is set to 1 × 10 7 s and simulations are performed625

over a physical time of 2.50 ms on successive mesh grids of 2048, 1536, 1024, 768, 512626

and 384 points, which represents x 10, 13.3, 20, 26.6, 40, 53.3 m, respectively;627

• for the temporal accuracy, a mesh grid of 1024 points ( x = 20 m) is used. Sim-628

ulations are performed over a physical time of 2.50 ms with successive time-steps of629

t = 1, 2, 4, 8, 12.5, 20 × 10 7 s.630

Note that for all computations performed to assess the convergence rates, the absolute and relative631

tolerances for the DVODE solver are both set to 10 14, while method III is used to solve the632

variable-coe cient Poisson equation with a tolerance parameter set to 10 10. The number of633

stages for the RKC method is set to K = L = 12 for the integration of di usion terms. This value634
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Figure 2: Structure of a freely propagating one-dimensional premixed methane/air ame in a closed domain at 101325 Pa
and equivalence ratio of = 0.6. Top: temperature. Middle: YOH. Bottom: YCO. Solid line ( ) initial solution
at t = 0 ms. Dotted line ( ): t = 0.50 ms. Dashed line ( ): t = 1.50 ms. Dashed-dotted line ( ):
t = 2.50 ms.
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ensures stability for the computation, which otherwise would become unstable for the largest635

time-steps (with t = 20 × 10 7 s and x = 20 m). Indeed, for this con guration the von636

Neumann stability criterion for the di usion would impose a theoretical maximum time-step of637

approximately 1.2 × 10 9 s. Moreover the CFL number reach 0.7 during the autoignition of the638

ame when the gases expand rapidly in either direction from the reacting zone. The CFL number639

of 0.7 is near the theoretical stability limit for explicit time integration.640

Variable Global rates of convergence
Spatial Temporal

T 5.91 2.11
u 5.97 1.86
p1 7.48 1.93

6.24 2.10
YCH4 5.98 2.12
YO2 5.89 2.11
YCO2 5.99 1.98
YCO 5.81 2.07
YH2O 5.98 2.11
YOH 5.73 1.97
YCH3 5.34 1.99
YHCO 5.23 1.70
YH 5.61 1.95

Table 3: Spatial and temporal global rates of convergence for for the premixed 1D methane/air ame in a periodic, closed
domain.

Results are gathered in Table 3 for a selection of variables. The global spatial and temporal641

rates of convergence are approximately sixth-order and second-order, respectively. As the spatial642

discretisation is performed with sixth-order compact schemes everywhere in the computational643

domain, this result was expected. Moreover the addition of the time derivative of thermodynamic644

pressure into the energy equation and the divergence constraint does not a ect the temporal645

accuracy. Note that like the test case investigated in §4.1.1, the same issues for mass fractions of646

small amplitudes such as YHCO are observed in terms of convergence rates.647

All convergence tests performed within this section used method III with a tolerance pa-648

rameter set to 10 10 to solve the variable-coe cient Poisson Eq. (63) up to machine precision649

accuracy. The properties of the three methods proposed at §3.2.7 as well as the in uence of the650

tolerance parameter are now investigated in the following section.651

4.2. 2D Vortex-Flame interaction652

This test case aims to simulate the interaction between a pair of vortices and a ame front.653

Similar cases have been studied in the literature but with di erent fuel, ow con guration and654

numerical methods [53, 26, 37, 54, 28]. As recalled by Lessani and Papalexandris [54], quan-655

titative comparisons are di cult to establish because the aforementioned works do not provide656
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su cient information to exactly reproduce the same ame. However, this case represents a good657

numerical test to assess the implementation in 2D, as well as the stability behaviour of the code658

when vortices are leaving the domain through the out ow boundary.659

The simulations are carried out in a rectangular domain of length lx = 4 mm and height660

ly = 2 mm. The freely propagating 1D methane/air ame, which has been previously computed661

in §4.1.1, is imported as an initial condition, and ow parameters as well as boundary conditions662

are unchanged. The position of the ame front is located at x = 1 mm, and the ame pro le is663

homogeneously recopied along the y axis.664

Two vortices are superimposed on the ow. One vortex can be described by the following665

expressions:666

ux = u f +C
y y0

R2 exp r2/2 , uy = C
x x0

R2 exp r2/2 , (89)

where u f is the initial velocity pro le of the ame along the x axis, while x0 and y0 are the
coordinates of the center of a vortex and C and R denote the strength and radius, respectively.

Finally, r = (x x0)2 + (y y0)2 /R, and in the present simulation R = ly/48. If the subscripts
1 and 2 refer to the clockwise and counterclockwise rotating vortices, respectively, their initial
locations and parameter C are de ned by

x01 = lx/4, y01 = ly/2 ly/6, C1 = +0.3 × 10 3, (90)

x02 = lx/4, y02 = ly/2 + ly/6, C2 = 0.3 × 10 3. (91)

The in ow/out ow con guration is problematic, especially for the treatment of the hydrody-667

namic pressure. Indeed, as a zero pressure gradient is imposed at in ow and out ow boundaries,668

uctuations leaving the domain through the out ow boundary may trigger non-physical oscil-669

lations of the hydrodynamic pressure in the whole domain, leading to a destabilisation of the670

simulation. It is well known that the design of a non-re ecting radiation condition at the outlet of671

a computational domain is di cult, especially in 2D/3D. There is an extensive literature on this672

subject but there is no consensus on resolving the challenges, and the proposition of a general673

form for open conditions is still under investigation [55]. In the present code, the 2D extension674

of the Orlanski out ow boundary condition proposed by Raymond and Kuo [56] was tested, but675

no real improvement in the stability was observed.676

Furthermore, this stability problem can be e ciently overcome by imposing a sponge layer677

zone near the outlet, so as to damp uctuations and virtually keep the ow variables constant678

at the boundary. The method proposed by Billson et al. [57] was implemented and successfully679

tested. Basically a source term is added to the governing equations:680

Q
t
= . . .

(x)
x

Qn Q̄n , (92)

where681

(x) = max
x x0

xmax x0

2

, (93)

and682

Q̄n = Q̄n 1 + (1 ) Qn. (94)

In the above equations, Q represents the solution vector and max = 1 in the present sim-683

ulation, while the beginning and the end of the sponge region is bounded by x0 = 3 mm and684
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xmax = 4 mm, respectively. The term Q̄n represents a target eld where the computed solution685

should approach. A value can be provided, but it is however di cult to guess. In the present sim-686

ulation, this term is constructed by time-averaging of the solutions over the rst 50 time-steps.687

During this process, = 0.99. For the remaining of the simulation, = 1 so as to deactivate the688

averaging process. Note that in the present simulation, the damping term described at Eq. (92) is689

only applied to the momentum and temperature Eqs. (5-6), the species mass fractions being not690

directly constrained but following the density and temperature evolution.691

The present simulation was performed on a regular, cartesian mesh grid of 1024× 512 points692

in the x and y directions, respectively. A constant t = 20 s was selected, whereas the number693

of RKC stages were set to K = L = 5. Both absolute and relative tolerances were set to 1 × 10 8
694

for the implicit integration of the chemistry with DVODE, while = 1 × 10 6 was set for the695

resolution of the Poisson equation. The simulation was run over a physical time of 3 ms on 192696

cpus, which represent a wall-clock time of 120 hours.697

Results are shown in Fig. 3 at 4 instants after start of the computation. The mass fraction698

of the species OH is employed to distinguish the ame front. The vorticity is depicted by the699

contour lines, the white ones and black ones representing the clockwise and counterclockwise700

rotations, respectively. At the beginning of the simulation, the vortices are naturally convected by701

the ow inside the fresh mixture. As they come closer to the reaction zone, the reaction front is702

stretched and ame-generated vorticity appears along the ame front. When crossing the ame,703

the initial vortices are strongly dissipated, and then convected away from the ame by the burnt704

mixture. This physical behaviour is qualitatively similar to other simulations reported in the705

aforementioned references. Moreover, as evident in the shapes of the ame front, the symmetric706

features of the ow with respect to the central axis at ly/2 are perfectly reproduced, verifying707

then the 2D implementation.708

Note that the present case was also run with a coarser mesh of 512 × 256 points in the x709

and y directions, respectively. The simulation was advanced in time over 7 ms so as to assess710

the stability of the simulation when the vortices leave the computational domain. Although711

not shown in the present paper, results show that computations with the sponge layer region is712

e cient and that no instabilities arise either from the out ow boundary, or from the interface713

between the beginning of the damping zone and the physical computational domain.714
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t = 1.2 ms t = 1.6 ms

t = 2.0 ms t = 2.4 ms

Figure 3: Simulation of the interaction of a vortices pair with a methane/air ame at t = 1.2 ms, t = 1.6 ms, t = 2.0 ms
and t = 2.4 ms. The mass fraction of the species OH is represented to distinguish the ame front. The vorticity is
depicted by the contour lines, the white ones and black ones representing the clockwise and counterclockwise rotations,
respectively.

28



4.3. Variable-coe cient Poisson equation: Assessment of resolution strategies715

The present section is devoted to the analysis of the three methods proposed in §3.2.7 to solve716

the variable-coe cient Poisson Eq. (63), as well as the in uence of the tolerance parameter .717

This study relies rst on a test case of autoignition of mixing layers of heptane (C7H16) and air in718

a domain closed by solid walls. Then the study is extended to the 2D Vortex-Flame con guration719

previously reported in §4.2.720

4.3.1. One-dimensional autoignition of a heptane-air mixture in a closed domain.721

The con guration consists of a one-dimensional domain of length l = 5 mm. Walls are722

imposed at both ends, and the temperature and species mass fractions evolve freely, i.e. u = 0,723

T/ x = 0 and Ys/ x = 0. The initial thermodynamic pressure p0
0 is set to 4×106 Pa, while the724

mixing layers have an initial uniform temperature of T 0 = 1000 K and follow a species pro le725

given by726

Y0
C7H16

=
1
2

1 tanh x x f / f , (95)

Y0
O2
= 0.233 1

1
2

1 tanh x x f / f , (96)

Y0
N2
= 1 Y0

C7H16
Y0

O2
, (97)

where x is the coordinate of a mesh point, while x f = l/2 and f = 120 m are the location and727

the thickness of the interface between heptane and air, respectively. Moreover, no initial velocity728

is imposed on the ow, hence u0 = 0 everywhere.729

The mesh grid is composed of 1001 points, which represents a space grid of x 5 m.730

The time-step is set to t = 1 × 10 7 s and the simulations are performed over a physical time731

of 0.3 ms. The number of stages for the RKC integration of di usions terms are set to K =732

L = 5. Note that the von Neumann stability criterion for the di usion would impose a theoretical733

maximum time-step of approximately 7×10 11 s. The absolute and relative tolerance parameters734

for DVODE are both set to 10 14. Moreover in the present numerical set-up, the convective CFL735

reaches a maximum value of 0.02 at 0.2 ms when the velocity is maximum (see below). Such a736

low value is selected to ensure that no stability issues will arise during the study of the methods737

proposed to solve the variable-coe cient Poisson equation. Finally, the chemistry is described738

by a 37 species, 56 reactions mechanism proposed by Peters et al. [58].739

The temporal evolution of the ow is depicted in Fig. 4 for a selection of variables and740

for three times during the autoignition process. From the beginning of the simulation until741

t = 0.1 ms, the fuel (heptane) and the air are mixing through laminar di usion. As the ini-742

tial pressure and temperature are high, typical of diesel combustion engines, the mixture then743

auto-ignites and the temperature rises rapidly to values higher than 2000 K. Hence, as shown in744

Fig. (5) for t = 0.2 ms, a strong gradient of velocity is generated due to expansion. By about745

0.3 ms the temperature has stabilised at approximately 2800 K, and the peak velocity decreases746

to approximately 0.15 m.s 1.747

The methods proposed in §3.2.7 are now investigated. The simulation of autoignition of748

heptane is repeatedly performed with methods I, II and III. For methods I and III, the tolerance749

parameter is varied with values = 1, 2, 4, 6, 8, 10, 12×10 12, method II being without iterations.750

The solutions are the velocity elds taken at t = 3 ms and Eq. (87) is used to compute to the L2-751

norm of the errors formed with the reference solution taken to be the solution obtained with752
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Figure 4: Structure of an autoignition sequence of a one-dimensional ame into mixing layers of heptane and air, at
4 × 106 Pa. Solid line ( ) initial solution at t = 0 ms. Dotted line ( ): t = 0.1 ms. Dashed line ( ):
t = 0.2 ms. Dashed-dotted line ( ): t = 0.3 ms.
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Figure 5: Velocity of the ow during an autoignition sequence of a one-dimensional ame into mixing layers of heptane
and air, at 4 × 106 Pa. Solid line ( ) initial solution at t = 0 ms. Dotted line ( ): t = 0.1 ms. Dashed
line ( ): t = 0.2 ms. Dashed-dotted line ( ): t = 0.3 ms.

method I and with = 10 12. This choice is justi ed by the fact that for = 10 12, both methods753

I and III give virtually the same solution.754

Results are shown in Fig. 6. The methods I, II and III are represented by circle, cross and755

square symbols, respectively. Obviously method II is the least accurate as the error is O(10 3),756

which is far from the machine precision limit. Both methods I and III convergence to the ma-757

chine precision accuracy for very low values. However an interesting feature of method III is758

that the accuracy of O(10 12) is reached for values of of O(10 6), while with method I such759

order of accuracy is only reached for of O(10 12). This suggests that method III signi cantly760

accelerates the convergence when the pressure equation is solved iteratively.761

As visible in Fig. (4) for the density and Fig. (5) for the velocity, there are strong gradients762

in the ow that evolve quickly in time, and with a density ratio of about 11. Hence, due to763

the dependance of the non-linear Poisson equation on the density, its resolution up to machine764

accuracy is di cult and require a signi cant computational e ort. Indeed, as shown in Fig. 7,765

both methods I and III require the same number of approximately 250 iterations to solve the766

pressure Poisson equation up to machine accuracy. However choosing = 10 6 with method III767

requires about 100 iterations to reach the accuracy of O(10 12) during the projection-correction768

step. Note that the numbers of iterations presented in Fig. 7 are mean values computed over a769

whole simulation. It is also worth noting that this test case has been chosen to represents a ow770

under severe conditions, i.e. with transient ignition. In the context of the freely propagating771

methane/air ames presented at §4.1, solving the pressure Poisson equation with method III and772

= 10 10 requires only approximately 30 iterations.773
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Figure 6: L2 norm errors of the velocity eld at t = 3 ms formed by methods I, II and III respect to the tolerance
parameter for the heptane/air autoignition test case.

Figure 7: Mean number of iterations performed to reach the speci ed tolerance for the heptane/air autoignition test
case when methods I and III are chosen to solve the variable-coe cient Poisson Eq. (63).

4.3.2. Extension to the 2D Vortex-Flame test case774

The simulation of the interaction between a pair of vortices and a premixed methane ame,775

previously reported in §4.2, is repeatedly performed with methods I, II and III. Similarly to776

the 1D study presented in §4.3.1, for methods I and III, the tolerance parameter is varied with777

values = 1, 2, 4, 6, 8, 10, 12 × 10 12 and there are no iterations for method II. The solutions778

are the velocity elds taken at t = 1 ms when the pair of vortices interacts with the ame front.779

Equation (87) is used to compute to the L2-norm of the errors formed with the reference solution780

taken to be the solution obtained with method I and with = 10 12.781

Results are shown in Fig. 8. The methods I, II and III are represented by circle, cross and782

square symbols, respectively. Similarly to the 1D study (see §4.3.1), method III provides L2
783

norm errors reduced by several orders of magnitude compared to method I. In the present case,784

the accuracy ofO(10 12) is reached for values of ofO(10 8). However, contrary to the 1D study,785

the method II without iterations provides a better error compared to method I for > 0.01. Of786

course, the required value of to reach machine precision accuracy depends on the con guration787
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simulated and the numerical set-up. However it is emphasised that this value lies in the range of788

O(10 8) to O(10 6).789

Figure 8: L2 norm errors of the velocity eld at t = 1 ms formed by methods I, II and III respect to the tolerance
parameter for the 2D Vortex-Flame test case.

4.4. Investigation of the RKC method790

The damping parameter in Eq. (48) can be freely set by the user, but is critical to control the791

stability region of the method. As explained by Verwer et al. [38], if is very small, the stability792

region is extended along the negative real axis of the stability map but has a narrow strip with a793

sinusoidal shape. On the other hand, if is increased, the stability region becomes wider with794

an oval shape, but is shortened along the negative real axis. According to Verwer et al. [38], the795

choice of is crucial because the stability region must include the eigenvalues of both convection796

and di usion; smaller values result in large imaginary parts whereas larger values result in large797

negative real part. Verwer et al. [38] recommend the following choices, depending on the kind798

of problem solved: = 2/13 for strongly di usion-dominated problems, = 5 for convection-799

dominated problems, and = 10 for mixed convection-di usion problems. The attraction of the800

RKC method is that it has a stability interval that increases, respect to the number of iterations,801

with a quadratic behaviour. For very large values of , this quadratic behaviour is lost. However,802

for = 10 the stability boundary (K) follows the relation (K) 0.34(K2 1). This means that803

even for a convection-di usion problem, the quadratic behaviour of the RKC method is ensured.804

As the algorithm developed in the present paper employs the RKC method to solve problems805

involving convection and di usion operators of equivalent importance, a value of = 10 is806

chosen. Hence, the stability depends on the number of stages K and L chosen for the RKC807

integration procedures. It is interesting to study the evolution of the minimum number of stages808

K and L required to ensure stability. The freely propagating 1D premixed methane/air ame809

in a periodic closed domain, detailed above in §4.1.2, is selected as a test case. Recall that810

x = 20 m. Figure 9 presents the results for di erent values of t ranging from 6.25×10 8 s to811

2.75 × 10 6 s. Note that this latter value corresponds to a convective CFL of approximately 0.85812

and represents an upper-bound limit on the overall stability of the algorithm. Beyond this value813

the algorithm is found unstable whatever the choice of K and L.814

A simple calculation based on the von Neumann stability criterion shows that a maximum815

time-step of approximately 2.75 × 10 8 s would be required to ensure stability. Recall that the816

minimum number of stages required for the RKC method is K = L = 2. This minimum value817
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ensures stability for time-steps below t = 6.25 × 10 8 s, which is the limit estimated from the818

von Neumann stability criterion. As depicted in Fig. 9, employing larger time-steps requires the819

number of stages of the RKC method to be increased. For a large time-step t = 2.75 × 10 6 s,820

K = 14 and L = 12 are needed to keep the stability of the algorithm.821

Figure 9: Minimum number of iterations of the RKC method to ensure stability for di erent values of t ranging from
6.25 × 10 8 s to 2.75 × 10 6 s. The con guration investigated is the freely propagating 1D premixed methane ame in a
closed, periodic domain (see §4.1.2). Circle symbol ( ): number of stages K. Cross symbol (×): number of stages L.

The present analysis demonstrates the power of the Runge-Kutta-Chebyshev method to per-822

form the integration of the di usion terms. Only a few iterations are needed to ensure the stabil-823

ity of the algorithm, and for a range of time-steps up to about four orders larger than the critical824

time-step estimated by the von Neumann stability criterion. Note that although direct compar-825

isons cannot be performed because the test cases are not identical, the present paper shows that826

the number of iterations required by the RKC method is about an order less than the number827

of iterations reported by Yu et al. [28] who adopted a fractional step approach to integrate the828

di usion operators.829

4.5. 3D premixed turbulent ame in a lean methane/air mixture830

HOLOMAC has been developed primarily for applications to DNS of low-Mach-number831

turbulent reacting ows with multistep kinetics. Figure 10 shows snapshots from three sim-832

ulations of a premixed turbulent ame propagating in a three-dimensional domain in a lean833

methane/air mixture at an equivalence ratio of 0.6. Volume rendering of temperature is shown834

for three levels of turbulence intensity u . When u is normalised by the laminar ame speed S L,835

the corresponding values are 2, 5, and 10 in Figs. 10(a), (b), and (c), respectively. The domain836

is 12 × 5 × 5 mm in size and uniform discretisation of 10 m is employed. The ame thickness837

is of the order of about 100 m and the Kolmogorov length scale for the highest turbulence in-838

tensity case is approximately 20 m. In other words, the Kolmogorov length scale and the ame839

are resolved. The gures are taken once the turbulent ame speed has reached a statistically840

steady state value. Detailed analysis of these and other results will be published separately. The841

objective of reporting these results here is only to demonstrate the capability of the code to cap-842

ture these complex turbulent ame structures. In particular, notice that as turbulence intensity is843

increased, there is increased wrinkling of the ame. This would, of course, result in increased844

turbulent ame speed. Also, notice that as turbulence intensity is increased, islands of burned845
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and unburned regions can be clearly identi ed. These islands are formed as a result of ame846

extinction caused by turbulent strain. Subsequent to extinction, the mixture may locally reignite.847

Accurate prediction of extinction, ignition and re-ignition often require multistep kinetics. It is848

interesting to note that the highest absolute turbulence intensity values in these simulations are849

about 2 m.s 1 and the highest turbulent ame speed is also about 2 m.s 1. These speeds are suf-850

ciently low for this problem to lie in the low-Mach-number regime. HOLOMAC is well suited851

for these fundamental studies carried out at low-Mach-number and requiring multistep kinetics852

for accurate prediction of complex phenomena.853

5. Conclusions854

A novel and e cient algorithm with quasi-spectral accuracy has been presented in this paper855

to conduct DNS of turbulent reacting ows with detailed chemistry under the low-Mach-number856

assumption. The accuracy and e ciency of the algorithm have been assessed by employing dif-857

ferent test problems. First, a freely propagating methane/air premixed ame was computed with858

a detailed kinetic mechanism. Comparisons have been made with solutions from the reference859

commercial software CHEMKIN, as well as self-convergence tests. It has been demonstrated860

that a second-order accuracy is reached in time, which was expected, and this validates the imple-861

mentation of an operator-split strategy. As the spatial discretisation is performed with high-order862

compact schemes, it has been proven that the spatial convergence rate is sixth-order when the863

domain is periodic, and between fourth and fth-order accurate when walls or in ow/out ow864

boundary conditions are employed. A 2D case consisting on the interaction between vortices865

and a methane/air ame has been performed, demonstrating the ability of the algorithm to han-866

dle vortical ow elds in the domain and at boundaries.867

In the context of a fractional-step, projection-correction procedure, three di erent methods868

have been proposed to resolve the variable-coe cient Poisson equation and to perform the cor-869

rection in pressure of the velocity elds. An enhanced method, based on a mixed implicit-explicit870

approach, has been proposed to speed-up the achievement of machine precision accuracy. Fur-871

thermore, the convection-di usion operators are treated with an explicit Runge-Kutta-Chebyshev872

method. The performance of the method has been assessed and depending on the time-step, only873

a few number of iterations are required to ensure numerical stability for large time-steps. Finally,874

3D Direct Numerical Simulations of a premixed turbulent ame in a lean methane/air mixture875

and for di erent turbulence level intensities are reported.876

The code developed to implement the present algorithm has been called HOLOMAC, and877

its e ciency opens the way to tackle DNS of reacting ows to understand complex turbulent and878

chemical phenomena in ames.879
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Figure 10: Volume rendering of temperature for 3D simulations of premixed turbulent ames in a lean methane/air
mixture for normalised turbulence intensities u /S L of (a): 2, (b): 5 and (c): 10.
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[5] B. Franzelli, E. Riber, M. Sanjosé, T. Poinsot, A two-step chemical scheme for Large-Eddy Simulation of kerosene-896

air ames, Combust. Flame 157 (2010) 1364–1373.897

[6] S. Mukhopadhyay, J. Abraham, In uence of heat release and turbulence on scalar dissipation rate in autoigniting898

n-heptane/air mixtures, Combust. Flame 159 (2012) 2883 – 2895.899
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